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1. INTRODUCTION

The determination of disturbance propagation paths in distributed parameters
systems is an important issue related to a wide range of vibration problems, such
as transient, impact loads and passive and active control implementations.
The purpose of the present study is to show the convenience of visualizing the
disturbance propagation paths along continuous systems using a wave approach,
based on a simulation of periodic waveguide dynamics [1]. This concept is
illustrated by its applications to an axially moving string system coupled to
a stationary guide and a point controller. Since the string is not dispersive,
Laplace transform technique can be used to determine the exact response
of this combined system subjected to transient loads. However, it is worth
mentioning that this method is more general and its application is restricted to
structures with regular geometry rather than one-dimensional systems. A recent
study of the transient response of the translating string [2] used the
(distributed) transfer function methods [3] to trace disturbance propagation
paths along the string under general boundary conditions. Although the
authors have carefully pointed out the advantages of their method with respect to
Green's function modal expansion approach [4] and by some applications in
control design [5], many of the peculiar properties of the wave propagation
phenomenon are not well outlined. Furthermore, the disturbance propagation
paths are especially di$cult to trace when the string is subjected to multiple
excitations and constraints.

Section 2 describes the wave transfer matrix method [1] and its interpretation for
time domain applications. For brevity, details regarding the wave dynamics of the
translating string are omitted, since these are described in reference [1]. In Section
3, an example of a string system coupled to point constraints, represented by
a spring-mass-dashpot system and a point controller is studies. The response is
given in the frequency domain and is then converted into time domain by use of
Laplace transform package of Mathematica.
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Figure 1. A schematic diagram of the axially moving string under arbitrarily spaced excitations.
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2. DISTURBANCE PROPAGATION PATHS IN TRANSLATING STRING

Consider a translating string moving at constant (sub-critical) speed c between
two boundaries separated by a distance l"1, as shown in Figure 1. The string is
subjected to point-wise excitations in terms of applied forces F* (x

i
, i) and/or

prescribed motions ;* (x
i
, t) along its length. The string's transverse de#ection,

denoted by ;* (x, t) is viewed as comprising the sum of positive and negative
displacement wave components <` (x, t) and <~ (x, t). According to the wave
transfer matrix approach [1], wave states of continuous systems under multiple
excitations can be factorized as free and forced wave "elds. The free wave "eld can
be expressed with reference to the incoming wave at either end of the system, while
the forced "eld resembles the in"nite system behaviour in that it is independent of
the boundary conditions. Thus, the string wave dynamics can be expressed through
the right boundary incoming wave as
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where s is the Laplace variable and lower-case symbols (i.e. v`, v~, u* and f *) have
been used to distinguish them from their time domain counterparts. The wave
transfer matrix T (x
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"s/(1!c) are the phase constants associated with the v` (x, s) and v~ (x, s),

respectively. The right boundary incoming wave v` (1, s) in equation (1) is given by
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where r
0
(r
1
) is the re#ection coe$cient of the left (right) boundary'

The denominator of v` (1, s) can be expanded as
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The above equations reveal the &&global'' behaviour of v` (1, s) in the sense that it
conveys all the information regarding the dynamics of the entire system during its
continuous propagation upstream and downstream directions. Consequently, the
response in equation (1) may be interpreted in physical terms as the sum of
a reverberant "eld through v` (1, s) plus the direct "eld. The is true for v~ (x, s) since
it is made up of the contribution of re#ected v` (1, s) and the direct "eld of
excitations at x

k
*x. However, this is not the case for v` (x, s), since no positive

wave emanating from x
k

will directly contribute to the response at points
positioned to the left of it (x

k
'x). In other words, the response at v` (x, s), for

excitations departing from x
k
'x, should entirely be contained in the "rst

(reverberant) part of solution (1). To remove this apparent contradiction, let us
consider the example of Figure 2. This "gure shows the paths of the positive wave
component generated from a disturbance located at x

1
and detected as a positive

wave at a point x (x(x
1
). It is clear that such excitation will "rst hit the right

boundary (therefore, resulting in v` (1, s)) before re#ecting at both boundaries and
reappearing as v` (x, s). If this disturbance propagates beyond the point x (x(x

1
),

then it circumnavigates the system returning to its sources: in other words, it
reappears again as v` (1, s). However, the reappearance of this wave component as
v` (1, s) includes, unavoidably, a further contribution of the same source in the
positive direction. Therefore, if we want to describe v` (x, s) in terms of v` (1, s), we
have to discard this extra source. Indeed, this is what equation (1) does. It actually
makes a &&short cut'' in describing v` (x, s) in terms of v` (1, s) and compensates for
the di!erences between they by an &&arti"cial direct "eld'', instead of following the
entire paths of the disturbances along the system. This can be veri"ed by extracting
the contribution of the disturbance f * (x

1
, s) from equation (1). Thus, it is found

that
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The upper parts of the above equation is taken straight from equation (1), while the
lower part of it shows exactly what we were trying to explain in Figure 2,
substituting equation (2) into equation (4), gives
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where the &&arti"cial direct "eld'' is cancelled, giving rise to the true paths sketched
in Figure 2. The second term on the numerater of equation (5) is the contribution of
the negative wave of f * (x

1
, s) after being re#ected at the left boundary and

appearing as a positive wave at the detection point. This way of describing the
disturbance propagation paths can be better appreciated if one remembers that the
"rst term on the upper part of equation (5) holds for the case x

1
(x.
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As the reader may realize, the intention in the above discussion is primarily to
describe how equation (1) factorizes the disturbance propagation paths. The
importance of this, when each term in it exactly re#ects the physics of the system, is
the &&local modelling ability'' inherent in the solution. In other words, in some
circumstances the information contained in equation (1) may be su$cient and the
details regarding the reverberant response contained in equation (2) may be
unnecessary. This point is further clari"ed in the next section

3. DISTURBANCE PROPAGATION PATHS IN A TRANSLATING STRING WITH
A SPRING-MASS-DAMPER AND POINT CONTROLLER CONSTRAINTS

Consider the system shown in Figure 3, where the string is constrained by
a stationary spring-mass-damper and a point controller positioned at x

1
and x

2
respectively. The quantities k, m and d are the constraint sti!ness, mass and
damping constants respectively. Disturbances are assumed to be applied at regions
upstream of the guide position. In order to determine the modi"ed propagation
paths of this system, all constraints will be expressed in terms of the boundary
incoming water v` (1, s).
Figure 2. Propagation paths of the positive wave generated by a disturbance at x
1
detected at x(x

1
.

Figure 3. A schematic diagram of a translating string with spring-mass-dashpot and controller
constraints at points x

1
and x

2
.
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Suppose the objective of the controller constraint is the minimization of vibra-
tion in regions upstream of the actuator position. Thus, in principle, is ful"lled by
cancelling the negative wave component at the actuator location. Thus, with
reference to equation (1), this wave component is given by
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which consists of the contribution from the reverberant "eld through v` (1, s) plus
the control force, f * (x

2
, s), direct "eld. Note that no information regarding the

dynamics of regions upstream of the controller position is explicitly involved in
equation (6). Thus, the cancellation of this wave component required that
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Although the above control law appears very simple, the detection of (re#ected)
v` (1, s) is di$cult. This is due to the fact that it cannot be sensed directly but must
be inferred from physical measurements. This in turn complicates the control
procedure [6, 7]. This is because if the measurement is made in terms, say, of
a displacement sensor, this will lead to the detection of both negative and positive
wave components at the sensor position. On the other hand, the controller will
suppress then negative wave and generate a wave component, with the same
amplitude, in the positive direction. The consequence of this is the creation of
additional &&closed-loop paths'' between the actuator position and the system end
(the right end in the present case).

Since the right boundary incoming wave cannot be sensed directly, it is desirable
to express the controller force in equation (7) in terms of physical measurements.
Suppose that u (x
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By expressing v` (1, s) in terms of u (x
3
, s) and substituting the result in equation (7),

the control force can be given in terms of the sensor displacement as
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From equation (1), the displacement at the spring-mass-damper position is given by
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or in terms of v` (1, s) alone, with the use of equation (7), as
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The guide reaction force can be given as
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If the system is subjected to left end prescribed motion u* (0, s), then by
substituting equations (7), (11) and (12) to equation (2), the modi"ed paths of the
right boundary incoming wave becomes

v` (1, s)"
a
2

ec
1

[M1!a
1

r
0
e(c

1
!c

2
)x

1N M1!(!1) r
1
e(c

1
!c

2
) (1!x

2
)N]

u* (0, s), (13)

where
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(14)

are the re#ection and transmission coe$cients at the spring-mass-damper position
[8].

As clearly shown in the denominator of equation (13), there are two sources of
possible resonance in v` (1, s). The "rst is due to the round trip path that occurs
between the string's left boundary and the spring-mass-damper position. The
second source is introduced by the action of the controller itself. The controller, by
suppressing the string's right boundary re#ected wave, e!ectively acts as a perfectly
re#ecting device (with re#ection coe$cient equal to !1). The latter source can be
avoided by placing the controller at the right boundary (x

2
"1), since it e!ectively

generated only one wave component that destructively interacts with the re#ected
v` (1, s).

As the disturbance propagation paths are described in terms of v` (1, s), then the
second step is to determine the physical response along the entire system.

With equations (7), (11) and (12), the response at x3[x
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, 1] is
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where it is clear that the negative-going wave is cancelled by the controller.
The response at x3[0, x
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] is
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Notice that, as long as x
2
3 (x

1
, 1), solutions (16) and (17) are independent of the

controller location. For x
3
"x

2
"1 (collocated boundary control), equation (15) is

meaningful only for x"1.
Before performing the inverse Laplace transform of the solution each term in the

denominators is expanded in a manner similar to equation (3). The time domain
response is then obtained numerically using the Laplace transform package of



Figure 4. Response measured at the central constraint of the axially moving string subjected to
a rectangular displacement pulse applied at x"0; with the controller constraint (solid lines); without
control (dashed lines). k"10, m"0)1, d"0 and c"0)6.

Figure 5. Response measured at the central constraint of the axially moving string subjected to
a unit step load applied at x"0)15; with the controller constraint (solid lines); without control
(dashed lines). k"10, m"0)1, d"0 and c"0)6.
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Mathematica. The following simulation results illustrate the response of the string
with "xed boundaries (r

0
"r

1
"!1) and a central dynamic constraint (x

1
"0)5)

with k"10. m"0)1 and d"0. Figure 4 gives the response of the system to
a rectangular displacement pulse of unit magnitude and duration q"0)2. In
Figure 5, the system is subjected to a unit step load applied at x"0)15. In both
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"gures the response is measured at the spring-mass system position and the string
transport speed c"0)6. In these "gures, the dashed lines (solid lines) are the
system's response without (with) the controller constraint. In both cases the
response with controller constraint is reduced.

4. CONCLUSION

This work shows that disturbance propagation paths in continuous systems can
be visualized, in a simple and compact way, by simulating periodic waveguide
dynamics. This is illustrated through a simple example consisting of an axially
moving string constrained by a spring-mass-damper stationary system and by
a point controller. The advantage of factorizing the response into free and forced
"elds is shown and its interpretation for time domain analysis is given. By using
Laplace transform technique, plots characterizing the exact response of the string
system subjected to transient loads are also provided.
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